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Introduction 
Prostate cancer is the most common cancer and the second leading cause of cancer 

deaths in males in the United States. Retinoids (retinol and its metabolites and derivatives) 
have been used in the prevention and treatment of some types of cancer. It has been shown 
that retinoic acid (RA), a biologically active form of retinol, is effective in inhibiting the 
cell growth and promoting differentiation of prostate cancer. It exerts its biological 
activities by binding to nuclear retinoic acid receptors (RARs) and retinoid X receptors 
(RXRs). There are three RARs and three RXRs encoded by different genes (a, P, y). Each 
RAR and RXR gene encodes several protein isoforms, generated by different promoter 
usage or alternate splicing. The RARPj isoform, the most abundant RARP isoform, is 
transcriptionally induced by RA in many cell types (1). A limitation to designing effective 
retinoid therapies in the treatment of prostate cancer is the lack of understanding of the 
molecular mechamisms that control retinoid-mediated growth inhibition and 
differentiation. It has been reported that prostate cancer cell lines PC-3 and DU-145 do not 
express RARP, while stable expression of RARP into the PC-3 cells results in an increased 
response to growth inhibition mediated by a RARp aganist and a hexafluoride vitamin D3 
analog (2). There are data indicating that RARP plays an important role in mediating the 
growth inhibitory actions of RA. Conversely, the loss of RARP expression occurs during 
the process of carcinogenesis. Reduced expression of RARP is a common feature of 
premalignant lesions and carcinogenesis. (3-21). Malignant cells with decreased 
expression of RARP become resistant to RA treatment (15, 22, 23), whereas the up- 
regulation of RARP parallels RA-induced growth suppression in some tumor cells (24-26). 
In this study we studied the mechanisms by which RARP mediates the growth inhibitory 
actions of RA by using murine F9 wild type (F9 Wt) and F9 RARP2 knockout (F9 RARP/" 
) cells as an experimental model. 

Body 
We have previously shown that the F9 teratocarcinoma RARP2 knockout cell line 

exhibits no growth arrest in response to RA, whereas F9 Wt, F9 RARa''" and F9 RARy"'" 
cell lines do growth arrest in response to RA. To examine the role of RARP2 in growth 
inhibition, we analyzed the cell cycle regulatory proteins affected by RA in F9 Wt and F9 
RARPJ"'' cells. Flow microfluorimetry analyses revealed that RA treatment of F9 Wt cells 
increased the percentage of cells in the Gl/GO phase of the cell cycle. In contrast, RA did 
not alter the cell cycle distribution profile of RARPj"''cells. In F9 Wt cells, cyclin Dl, D3 
and cyclin E protein levels decreased, while cyclin D2 and p27 levels increased after RA 
treatment. Compared to the F9 Wt cells, the F9 RARPz''' cells exhibited lower levels of 
cyclins Dl, D2, D3, and E in the absence of RA, but did not exhibit further changes in the 



levels of these cell cycle regulators after RA addition. Since RA significantly increased 
the level of p27 protein (~ 24-fold) in F9 Wt as compared to the F9 RARP/' cells, we 
chose to study p27 in greater detail. The p27 protein plays a pivotal role in the regulation 
of the proliferation and differentiation of many cell types. Down-regulation of p27 has 
been observed in carcinogenesis and metastasis and the level of p27 has been used to 
evaluate cancer progression (27). The p27 mRNA level and the rate of p27 protein 
synthesis were increased in RA treated F9 Wt cells, but not in F9 RARP/' cells. 
Moreover, RA increased the half-life of p27 protein in F9 Wt cells. Reduced expression of 
RARp2 is associated with the process of carcinogenesis and RARP2 can mediate the growth 
arrest induced by RA in a variety of cancer cells. Using both genetic and molecular 
approaches, we have identified some of the molecular mechanisms, such as the elevation 
of p27, through which RARP2 mediates these growth inhibitory effects in F9 cells. 



RA Results in CeO Growth Arrest in F9 Wt 
but not in F9 RARp2-/-CeUs 
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Figure lA. Analysis of the growth of F9 Wt and 
RARp2-/- cells after treatment with 1 JAM RA. 
The cells were plated in duplicate wells at a densi- 
ty of 3000 cells/well. The cell numbers were 
counted on the indicated days. The experiment 
was performed three times with very similar 
results. The values represent the mean± S.D. of 
three independent experiments. 
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RA Altered Cell Cycle Regulatory Proteins 
in F9 Wt and F9 RARP2"/-CeUs 
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Figure 2. F9 Wt and RARP2-/- cells were treated with 1 
\}M RA for the times indicated. Total cell lysates were 
prepared and Western blot analysis was performed. The 
experiment was performed three times with each antibody 
with similar results. Actin was used as a loading control. 
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RA Increases the Synthesis of p27 Protem m F9 Wt 
but not in F9 RARp2"^" Cells 
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Figures. (A) F9 Wt and RARP2-/-cells were 
treated with 1 ^M RA for the times indicated and 
then labeled with 50 ^iCi/ml [35S]-methionine for 
30 minutes. Immunoprecipitation with anti-p27 
antibody was performed. The radiolabeled pro- 
tein precipitates were electrophoresed on a 10% 
SDS-polyacrylamide gel that was subjected to 
autoradiography. (B) The amount of signal in A 
was quantified by NIH Image. The experiment 
was performed three times with very similar 
results. 



RA Increases the Level of p27 mRNA 
in F9 Wt but not in F9 RARP2-/" Cells 
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Figure 4. (A) F9 Wt and RARp2-/- cells were 
treated with 1 \iM RA for 96 hours. Total cellular 
RNA was extracted and Northern blot analysis 
was used to detect the level of p27 mRNA. (B) 
The amount of signal in A was quantified by NIH 
Image. The relative expression level of p27 
mRNA was depicted as the ratio of the density of 
p27 mRNA to actin mRNA for the same time 
point. This experiment was performed three 
times with very similar results. 
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RA StabOizes p27 Protein in F9 Wt CeUs 
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Figure 5. F9 Wt cells were cultured in the 
absence or presence of 1 |JIM RA for 48 hours, 
pulse-labeled with 100 |LiCi/ml [35S]-methionine in 
the presence or absence of RA for 1 hour and 
chased for 6 hours. Immunoprecipitation with 
anti-p27 antibody was performed. The protein 
precipitates were electrophoresed on a 10% SDS- 
polyacrylamide gel that was subjected to autora- 
diography. The amount of p27 in the absence or 
presence of RA was analyzed with ImageQuant. 
The amount of p27 in the absence or presence of 
RA inunediately after the 1 hour pulse labeling is 
set at 100. *P< 0.05. 
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Key Research Accomplishments 
• Examined the effects of RA via RARP on the protein levels of several cell cycle 

regulatory porteins, one of which is p27. 
• Investigated the effects of RA via RARP on the levels of p27 mRNA and protein. 
• iDetermined the effects of RA via RARP on the stability of p27 protein. 

Reportable Outcomes 
Delineated some of the molecular mechanisms by which RARp mediates the growth 
inhibitory effects of RA. 

Conclusions 
The increase of p27 is associated with the growth inhibition induced by RA via RARP in 
F9 Wt cells. Considering the striking findings that stable transfection of RARP to PC-3 
cells results in a sensitivity to growth inhibition caused by RARP against and a vitamin D3 
analog, these data may be of use in designing more efficient chemotherapy with retinoids. 
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APPENDIX 

In addition to what I previously reported, I studied the effects of retinoids and 

lecithin-.retinol acyltransferase (LRAT) on the differentiation of human prostate cancer 

cells. LRAT is an enzyme involved in the metabolism of retinol to retinyl esters. It has 

been reported that the levels of LRAT and retinyl esters are reduced in some human 

cancers, such as prostate. The human prostate cancer cell line PC-3 was transfected with 

LRAT. The functional activity of LRAT in all the transfected cell Unes was determined 

by HPLC (Figure 1). All the transfected cell lines took up and esterified retinol into 

retinyl esters, while PC-3 wild type cells did not. The PC-3 and PC-3/LRAT transfectant 

cells were treated with retinoic acid (RA) or retinol (ROL) for various times. RT-PCR 

was used to test the effects of retinoids and LRAT on several molecular markers of 

retinoid action, such as keratin 18 and Gbx2, in human prostate. Soft agar assays for 

tumor cell growth were also performed. 

Our data showed that there were no obvious changes in the levels of the above molecular 

markers upon RA or ROL treatment in both PC-3 and PC-3/LRAT transfactant cells 

(Figure 2). These findings are important both in basic and clinical research. They indicate 

that retinyl esters are not crucial ligands for the regulation of the above genes in the 

carcinogenesis of human prostate. Our studies provide new information about retinoid 

effects on prostate cancer cells and provide a rationale for more efficient chemotherapy 

with retinoids. 
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